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Abstract. Methane (CH4) flux estimates from high-latitude North American wetlands remain highly uncertain in magnitude,

seasonality, and spatial distribution. In this study, we evaluate a decade (2007 – 2017) of CH4 flux estimates by comparing

16 process-based models with atmospheric CH4 observations collected from in situ towers. We compare the Global Carbon

Project (GCP) process-based models with a model inter-comparison from a decade earlier called The Wetland and Wetland

CH4 Intercomparison of Models Project (WETCHIMP). Our analysis reveals that the GCP models have a much smaller inter-5

model uncertainty and have an average magnitude that is a factor of 1.5 smaller across Canada and Alaska. However, current

GCP models likely overestimate wetland fluxes by a factor of two or more across Canada and Alaska based on tower-based

atmospheric CH4 observations. The differences in flux magnitudes among GCP models are more likely driven by uncertainties

in the amount of soil carbon or spatial extent of inundation than in temperature relationships, such as Q10 factors. The GCP

models do not agree on the timing and amplitude of the seasonal cycle, and we find that models with a seasonal peak in July10

and August show the best agreement with atmospheric observations. Models that exhibit the best fit to atmospheric observation

also have a similar spatial distribution; these models concentrate fluxes near Canada’s Hudson Bay Lowlands (HBL). Current,

state-of-the-art process-based models are much more consistent with atmospheric observations than models from a decade ago,

but our analysis shows that there are still numerous opportunities for improvement.
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1 Introduction15

Natural sources of CH4 contribute ∼40% of total global fluxes, and wetlands are possibly the largest single source (e.g.,

Kirschke et al., 2013; Saunois et al., 2020). Understanding the magnitude, seasonality, and spatial distribution of wetland CH4

fluxes is important to accurately predicting future carbon-climate feedbacks. However, the response of wetland CH4 fluxes to

temperature changes is uncertain (e.g., Zhang et al., 2023, 2017), especially in high-latitude regions where warming occurs 2-4

times faster than the global average (e.g., Rantanen et al., 2022).20

At least some of this uncertainty is related to uncertain permafrost dynamics. Permafrost covers approximately∼15% of the

land in the Northern Hemisphere (Obu, 2021), and it serves as a massive reservoir for carbon. Globally, permafrost regions store

about 1,000 to 1,672 peta-grams (Pg) of soil organic carbon (SOC), nearly twice the total amount of carbon in the atmosphere

(Schuur et al., 2015; Hugelius et al., 2014; van Huissteden and Dolman, 2012). As permafrost thaws, it changes the soil

environment and triggers microbial decomposition of the stored organic matter. When the soil is wet, microbial decomposition25

in permafrost leads to the release of CH4 through the process of anaerobic respiration. One study indicates that wetland CH4

fluxes can be large enough to flip some high latitude regions from a net carbon sink to a net source (Watts et al., 2023).

To understand high-latitude wetland CH4 fluxes and better predict future warming, process-based (bottom-up) models are

important as they can be used to estimate current wetland CH4 fluxes and provide insights to future CH4 projections from

regional to global scales, leveraging current scientific knowledge of different biogeochemical processes (e.g., Saunois et al.,30

2024; Nzotungicimpaye et al., 2021; Melton et al., 2013; Zhang et al., 2017). Despite their importance, the CH4 flux estimates

from bottom-up models can have large discrepancies and uncertainties. For example, bottom-up estimates show that total global

wetland fluxes range from 100 to 256 Tg CH4 yr−1 (Xiao et al., 2024; Zhang et al., 2024; Saunois et al., 2020; Liu et al., 2020).

In boreal North America, process-based models also estimate wetland CH4 fluxes ranging from 13.8 to 39.6 Tg CH4 per year

(Poulter et al., 2017). In addition, a recent study suggests an increase of 50 to 150% in global wetland CH4 fluxes by 2100, a35

large range of numbers which points to large uncertainties in current projections (Koffi et al., 2020). Model inter-comparison

projects like the Wetland and Wetland CH4 Intercomparison of Models Project (WETCHIMP) have been used to compare the

state-of-the-art wetland CH4 flux models across different regions of the globe (e.g., Miller et al., 2016b; Wania et al., 2013;

Miller et al., 2016a; Bohn et al., 2015). In more recent years, the Global Carbon Project (GCP) has been created to synthesize

scientific knowledge of the global carbon cycle, and this effort includes a large ensemble of the latest process-based CH4 flux40

models (Poulter et al., 2017; Zhang et al., 2024). Projects like WETCHIMP and GCP make it easier to identify and diagnose

uncertainties in wetland flux models because all modeling groups use similar modeling protocols, meteorological inputs, and,

in some cases, common inundation or wetland maps. However, there is limited knowledge on how these models have improved

or evolved over time compared to the earlier WETCHIMP inter-comparison.

A handful of studies have used approaches such as atmospheric modeling and inverse modeling to suggest improvements45

to process-based CH4 flux models across high latitudes (e.g., Miller et al., 2016a; Karion et al., 2016). For example, several

existing studies have used intensive aircraft campaign data to quantify CH4 fluxes from Alaska and provide a range of estimates

from 1.48 Tg CH4 per year to 2.9 Tg CH4 per year (Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al.,
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2022). Other studies focused on CH4 fluxes from high latitude North America use in situ CH4 observations from long-term

tower observation sites, and these studies provide a range of flux estimates from 14.8 to 19.5 Tg CH4 per year for Canada50

and 1.56 to 3.4 Tg CH4 per year for the Hudson Bay Lowlands (HBL), a prominent wetland region in northern Canada (e.g.,

Ishizawa et al., 2024; Miller et al., 2014; Pickett-Heaps et al., 2011; Thompson et al., 2017). Although top-down studies

provide relatively good agreement on flux totals from these regions, it is also worth noting that top-down studies do not always

agree, particularly on topics like seasonality and inter-annual variability. For example, Pickett-Heaps et al. (2011) indicates that

there is a sharp decrease in CH4 fluxes in September across the Hudson Bay Lowlands (HBL), while Thompson et al. (2017)55

argues that maximum CH4 fluxes occur in August and September. In addition, Sweeney et al. (2016) argues that there is no

multi-decadal trend in CH4 fluxes using observations from Utqiagvik, Alaska, while inverse modeling studies by Thompson

et al. (2017) and Ishizawa et al. (2024) identify significant inter-annual variability in fluxes across high-latitude North America.

The coarse spatial resolution of some inverse estimates can further limit comparison with process-based flux models. These

limitations and disagreements notwithstanding, results from top-down studies often provide better constraints on CH4 fluxes60

over large regional domains with a narrower range of uncertainties compared to process-based models.

In this study, we use atmospheric CH4 observations from tower sites to evaluate the GCP process-based models across

high-latitude North America. We specifically use four sets of analyses to compare atmospheric CH4 observations and the GCP

wetland flux models with a goal of suggesting future improvements to these models. For each of these analyses, we run each

GCP flux estimate through an atmospheric transport model to simulate atmospheric CH4, and we compare the results against65

available atmospheric CH4 observations. First, we compare the GCP models across high latitudes against the WETCHIMP

models and explore how process-based flux models have evolved over the past decade. Several existing studies have evaluated

the WETCHIMP models using atmospheric observations, and this retrospective comparison provides useful context on how

the state of science has changed since those studies (e.g., Miller et al., 2016b; Wania et al., 2013; Miller et al., 2016a; Bohn

et al., 2015). Second, we examine how the GCP models vary in CH4 flux magnitude and what potential factors might drive70

agreement or disagreement among the models. Third, we investigate differences in seasonal cycles across models that best

match atmospheric observations versus models that show seasonal discrepancies with atmospheric observations. Lastly, we

examine the spatial distribution of the CH4 fluxes estimated by the GCP models and identify spatial patterns that appear

to yield better agreement with available atmospheric CH4 data. We note that the GCP models are global in scale and not

specifically designed for high-latitude regions. With that said, state-of-the-art process-based models should ideally provide75

accurate flux estimates across all global regions, and we argue that regional comparisons are important to inform future model

development.

2 Data and Methods

To better understand current wetland CH4 fluxes, we compare GCP CH4 flux estimates with 11 years of in situ tall tower

data from the United States and Canada, spanning 2007 to 2017. We focus on the months of May through October each year.80

Wetland CH4 fluxes are largest during these months, and many existing top-down studies have focused on these months for
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their analyses (e.g., Miller et al., 2016b; Chang et al., 2014; Pickett-Heaps et al., 2011). By contrast, the ratio of wetland

fluxes to anthropogenic CH4 emissions is much smaller in other months of the year across Alaska and Canada, making it more

difficult to uniquely constrain wetland fluxes using atmospheric observations. The geographic domain of this study covers the

high-latitude regions of North America, ranging from 40◦ N to 80◦ N and 170◦ W to 50◦ W.85

2.1 Atmospheric CH4 Measurements

In this study, we use continuous atmospheric CH4 measurements from in situ towers across the Canada and the US between

years 2007 and 2017, and the atmospheric data come from the NOAA Observation Package (ObsPack) CH4 GlobalViewPlus

v5.1 dataset (Di Sarra et al., 2023). There are 21 available tower sites within the study domain, and the towers provide a

combination of continuous and flask measurements. We list a more detailed description of each tower site and its location in90

Table S1. We extract afternoon averages of the observations between 1pm and 6pm local time when the boundary layer is

generally well-mixed, an approach similar to multiple existing top-down studies (e.g., Miller et al., 2014, 2016a; Karion et al.,

2016; Ishizawa et al., 2024). During this time of day, CH4 measurements are arguably influenced by fluxes from a broader

region than at night. By contrast, the atmosphere is usually stable in the morning and at night with lower boundary layer

heights, making accurate atmospheric trace gas modeling challenging.95

We note that several previous studies have already used intensive aircraft campaigns to examine regional CH4 fluxes across

high-latitude North America (e.g., Miller et al., 2016b; Hartery et al., 2018; Chang et al., 2014; Sweeney et al., 2022). These

studies use inverse modeling to provide detailed evaluations of several key aspects of CH4 fluxes including magnitude and

seasonality. Existing, intensive aircraft campaigns are largely centered in Alaska, while tower-based measurements offer broad

spatial coverage across North America. In the present study, we focus on tower data to evaluate CH4 dynamics broadly across100

northern North America, and we refer the reader to the aforementioned studies for detailed analyses of intensive aircraft data.

2.2 Global Carbon Project Models (GCP Models)

The GCP includes global-scale wetland CH4 flux models that use diverse hydrological and biogeochemical schemes. The

most recent GCP model ensemble includes 16 process-based models spanning the period from 2000 to 2020, though some

models end earlier or later than 2020. A general description of these GCP models is provided in Table S2 and in Zhang et al.105

(2024). Each of the these models is run in two different ways: diagnostically and prognostically. The diagnostic runs from

each model are constrained by a predefined inundation map from the Wetland Area and Dynamics for Methane Modeling

version 2 (WAD2Mv2) product, while each modeling group can determine their own inundation map for the prognostic runs

(Zhang et al., 2021). Note that each modeling group submitted estimates of CH4 fluxes to the GCP, but the submissions do not

include variables like soil carbon. This fact limits our ability to diagnose disagreements in the CH4 flux estimates from different110

models. More detailed descriptions of the current GCP model ensemble, including their approaches to wetland inundation and

model parametrization can be found in Zhang et al. (2024).

In this study, we evaluate the 11 prognostic and 16 diagnostic models included in the GCP ensemble. Each of these models

was run using two different meteorological reanalysis products to examine the effects of meteorological uncertainties on esti-
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mated CH4 fluxes. These products include the Global Soil Wetness Project Phase 3 (GSWP3) and the Climate Research Unit115

Time-Series 4.06 (Harris et al., 2022; Lange and Büchner, 2020). A recent study showed that the differences between these

two climate-forcing datasets are negligible (Ito et al., 2023). Nevertheless, both datasets are included in this study to provide

a comprehensive evaluation. We regrid these GCP models into an uniform spatial resolution of 1◦ latitude by 1◦ longitude.

This regridding process is performed using the “remapcon” function from the Climate Data Operators (CDO) software, which

conserves the total fluxes of each model during interpolation (Schulzweida, 2023).120

2.3 Anthropogenic CH4 Emissions

Anthropogenic CH4 fluxes are not clearly known and are often underestimated in high-latitude North American regions, includ-

ing Alberta and other parts of Canada. For example, several existing studies estimate Canadian anthropogenic fluxes ranging

from 3.7 to 6.1 Tg of CH4 per year (Thompson et al., 2017; Scarpelli et al., 2021; Lu et al., 2022). Baray et al. (2021) also

suggest that CH4 fluxes from the Canadian energy and agriculture sectors are likely ∼59% higher than those reported in the125

national inventory. As a result, we include three distinct combinations of anthropogenic CH4 flux products to highlight the

variability and uncertainty in our analysis due to anthropogenic CH4 fluxes. This approach allows us to capture a range of

anthropogenic CH4 flux estimates, which helps us to better understand the uncertainties associated with human-related CH4

fluxes and their potential impact on high-latitude North America regions.

We use three specific anthropogenic flux products and regrid them to a spatial resolution of 1◦ latitude by 1◦ longitude for130

the study domain:

1. CarbonTracker CH4 2023 (Oh et al., 2023).

2. A combination of the gridded U.S. Greenhouse Gas Inventory (Version 2), and a gridded inventory of Canada’s anthro-

pogenic CH4 fluxes (Monforti Ferrario et al., 2021; Maasakkers et al., 2023; Scarpelli et al., 2021).

3. The Copernicus Atmosphere Monitoring Service (CAMS) (Granier et al., 2019).135

CarbonTracker is a data assimilation system designed to estimate CH4 fluxes on a global scale (Oh et al., 2023). Scarpelli

et al. (2021) constructed a Canadian anthropogenic flux inventory based on the Canadian National Inventory Report (NIR),

the Canadian Greenhouse Gas Reporting Program (GHGRP), and other datasets to provide a detailed sectoral breakdown of

fluxes. Meanwhile, Maasakkers et al. (2023) created a U.S. gridded inventory integrating data from the U.S. Environmental

Protection Agency’s (EPA) Greenhouse Gas Inventory (GHGI) to provide fluxes from different sectors. CAMS is a global data140

assimilation system that provides estimates of global atmospheric CH4 fluxes and atmospheric mixing ratios. This product

is derived from a combination of the EDGARv4.3.2 and Community Emissions Data System (CEDSv3) inventories, and the

product includes estimates of fluxes from different source sectors (Granier et al., 2019).
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2.4 Atmospheric Modeling Framework

We simulate the atmospheric transport of CH4 and CH4 fluxes using the WRF-STILT (The Weather Research and Forecasting-145

Stochastic Time-Inverted Lagrangian Transport) model, which has been widely used in numerous studies of regional green-

house gas fluxes (e.g., Miller et al., 2016b; Henderson et al., 2015; McKain et al., 2015; Kort et al., 2010; Feng et al., 2023;

Miller et al., 2014). STILT is a Lagrangian particle dispersion model that simulates atmospheric transport using an ensemble

of tracer particles (Lin et al., 2003). For the setup here, the model releases those particles from each measurement site, and

the particles travel backward in time for 10 days following the wind fields in WRF meteorology. STILT uses these particle150

trajectories to calculate surface influence maps or footprints for each atmospheric CH4 observation (Figure 1). These footprint

maps have units of mixing ratio per unit flux (ppb per µmol m−2 s−1) on a 1◦ by 1◦ grid, and we can directly multiply CH4

fluxes from the process-based models with these footprint maps to predict atmospheric CH4 mixing ratios at each tower site.

Specifically, the footprints used in this study are generated as part of the NOAA CarbonTracker-Lagrange project and are

available from 2007 to May 2018, which defines our study time frame (Hu et al., 2019).155

Since CH4 has an atmospheric lifetime of about 10 years, it can remain in the atmosphere and travel around the globe. To

account for the large-scale movements of CH4, we estimate CH4 boundary conditions using CH4 observations collected over

the Pacific and Atlantic oceans, from high-altitude tower sites in the continental US, and from regular aircraft flights across

the US and Canada. We use these observations to interpolate a curtain of CH4 mixing ratios around the boundaries of the

model domain. For each STILT simulation, we sample from this boundary condition curtain based on the ending locations of160

the particle trajectories. This procedure thus accounts for CH4 that enters the domain from other regions of the globe. The

approach used here is identical to that used in numerous existing regional CH4 studies (e.g., Miller et al., 2013, 2014, 2016a).

We note that the STILT particle trajectories used here from CarbonTracker-Lagrange do not include atmospheric oxidation

processes. However, CH4 oxidation by hydroxyl radicals likely has a small impact in our study given the short, 10-day time

frame of the regional STILT simulations used here. For example, Miller et al. (2013) argue that CH4 mixing ratios decay less165

than 1 to 1.5 ppb during the course of a typical STILT simulation, based on an analysis of in situ observation sites in the

continental US and estimated OH fields from GEOS-Chem. Overall, this decay is less than 5% of the average, total modeled

CH4 enhancements in this study. The impact of OH in our study may be even smaller because OH mixing ratios are usually

lower at high latitudes.

We combine the aforementioned modeling components using the following equation to compare atmospheric CH4 observa-170

tions with the STILT model predictions using the GCP flux models:

Z ∼H
[
s + A + B

]
+ b. (1)

where Z represents the atmospheric observations from the in situ towers across the US and Canada (dimensions n×1, where

n are the number of observations). H is a matrix of influence footprints assembled from the WRF-STILT model, showing how

surface fluxes from different locations and times contribute to the observations (dimensions n×m, where m is the number of175

flux model grid boxes in space and time). Within the brackets, s refers to wetland CH4 flux estimates from the process-based
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Figure 1. The US and Canadian atmospheric CH4 observing network from 2007-2017. The figure also shows the WRF-STILT mean daily

footprint map in ppb µmol−1 m−2 s−1 across the study domain of 40◦N to 80◦N and 170◦W to 50◦W. Red circle dots show in situ tall tower

sites from NOAA and Environmental Canada from the ObsPack GlobalViewPlus v5.1 dataset (Di Sarra et al., 2023). The lime-colored dots

represent non-wetland sites, where the wetland-to-anthropogenic CH4 concentration ratio is less than 1.5 (using anthropogenic emissions

from the CAMS product). In contrast, the red-colored dots indicate wetland-dominated sites, where this ratio exceeds 1.5.

GCP models (dimensions m×1, Sect. 2.2), A refers to the anthropogenic CH4 fluxes estimate from one anthropogenic product

(dimensions m× 1, Sect. 2.3), and B denotes biomass burning fluxes from the Global Fire Emissions Database (GFED v4.1)

(Randerson et al., 2017) (dimensions m×1). The last variable, b, represents the CH4 boundary condition (dimensions m×1).

Note that we primarily analyze tower-based observations sites where the average ratio of modeled CH4 from STILT using180

all GCP models to modeled CH4 from STILT using the CAMS anthropogenic flux product is higher than 1.5 (sect.2.4, sect.2.2,

sect.2.3). This screening means that the wetland contributions at each site are at least 50% higher than the likely influence

of anthropogenic emissions, and we exclude the other sites to prioritize wetland CH4 dominated regions (see Table S3 for

additional details). In this study, we also include ETL (East Trout Lake) and FNE (Fort Nelson) because their ratios are close

to 1.5 and we want to include as many sites as possible to have a broader spatial coverage. We focus on these sites because185

we aim to better quantify the contribution of wetlands to atmospheric CH4 levels while minimizing the confounding effects

of anthropogenic sources, the magnitudes of which are also uncertain. The ten final sites that we include within this study

are: Churchill, Manitoba (CHL), Cambridge Bay, Nunavut Territory (CBY), East Trout Lake, Saskatchewan (ETL), Estevan

Point, British Columbia (ESP), Fort Nelson, British Columbia (FNE), Fraserdale, Ontario (FSD), Inuvik, Northwest Territories

(INU), Behchoko, Northwest Territories (BCK), Chapais, Quebec (CPS), and the Carbon in Arctic Reservoirs Vulnerability190

Experiment Tower, Fairbanks (CRV) (see Table S1 for additional details). The remaining sites that are not included in this

analysis are towers in urban environments (e.g., sites in the Toronto and Vancouver metropolitan areas); towers close to oil and

7

https://doi.org/10.5194/egusphere-2025-2150
Preprint. Discussion started: 4 June 2025
c© Author(s) 2025. CC BY 4.0 License.



gas production in Alberta, Canada, or Prudhoe Bay, Alaska; towers that are frequently used as clean air background sites (e.g.,

Sable Island, Nova Scotia or WSA), and sites proximal to intensive agriculture.

2.5 Temperature Sensitivity195

We assess the relationship between wetland CH4 fluxes from the GCP models and temperatures by fitting Q10 curves for each

GCP model. The Q10 factor illustrates how CH4 wetland fluxes change with a per 10-degree change in temperatures, and a

higher Q10 means that wetland fluxes are more sensitive to temperature changes (e.g., Mundim et al., 2020; James, 1953; van

Hulzen et al., 1999). Several of the GCP models explicitly include a Q10 function within the model equations, whereas other

models use different functions or modeling schemes to parameterize the relationships between CH4 fluxes and temperature.200

Even though not all of the GCP models explicitly use a Q10 function, we nevertheless fit each of the flux estimates to a

Q10 function. Doing so allows us to directly compare the apparent temperature relationships in the different GCP models.

Furthermore, to account for the impact of inundation dynamics, we adjust the fluxes by multiplying them by the corresponding

inundation fraction at each grid cell. This adjustment normalizes the fluxes to a standard wetland area, demonstrating a more

consistent comparison of how wetland CH4 fluxes respond to temperature variations.205

The following formula represents the Q10 function (e.g., Zhang et al., 2024; Mundim et al., 2020):

R(T ) = Rb ·Q
(T−Tref)

10
10 (2)

where R(T ) are monthly wetland CH4 fluxes at near-surface air temperature T (◦C) based on the same meteorological

products used to generate the GCP models (Sect. 2.2), and Rb is the baseline flux at a reference temperature. In this study, we

set the reference temperature Tref at 15◦C, and the exponential term shows the difference between an ambient temperature210

and the reference temperature of 15◦C, capturing the proportional change in wetland CH4 flux with temperature. We use the

Nelder-Mead method to simultaneously optimize the parameters Rb and Q10 by minimizing the sum of squared errors between

the predicted fluxes R(T ) and the actual wetland CH4 fluxes from the GCP models (Gao and Han, 2012).

3 Results and Discussions

In this section, we compare the modeled CH4 mixing ratios using the GCP models to atmospheric observations. We use these215

comparisons to evaluate the magnitude, seasonality, and spatial distribution of the GCP flux models. In each subsection, we

also speculate on the possible reasons driving the agreement or disagreements that we see in our analyses. Note that we do not

include an extensive discussion of inter-annual variability (IAV) in our analysis; uncertainties in anthropogenic CH4 sources

lead to large uncertainties in our inferences about wetland fluxes, and we argue that it would be difficult to constrain IAV in

wetland fluxes across Alaska and Canada without accurate knowledge of IAV from anthropogenic sources. Disentangling these220

changes from changes in CH4 fluxes due to wetlands is a challenge, and existing studies reach conflicting conclusions (e.g.,

Ishizawa et al., 2024; Thompson et al., 2017).
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3.1 Comparisons Between the GCP and WETCHIMP Models

The GCP model ensemble is an updated version of the earlier WETCHIMP inter-comparison over a decade ago, and these

projects share five common models (LPJ-Bern, LPJ-wsl, ORCHIDEE, SDGVM, DLEM) (Melton et al., 2013). Overall, we225

find that, compared to the WETCHIMP models, the GCP models have a smaller flux magnitude, better consensus on flux

magnitude, and better agreement on the spatial distribution of fluxes within our study domain. This result points to an evolution

and growing consensus among state-of-the-art wetland CH4 flux models.

We find that the CH4 flux estimates from the GCP models are much smaller across most of high-latitude North America

compared to the WETCHIMP models. We calculate annual CH4 flux totals for Canada using the 11 prognostic and 16 diagnos-230

tic GCP models with both climate forcing datasets (GSWP3 and CRU), and the uncertainty bars in Fig. 2 represent the standard

deviation of the CH4 flux estimates among models within the same group. The mean annual CH4 flux total for Canada using

the 11 prognostic GCP models with CRU is 14.19± 7.41 Tg CH4 per year, and the mean using the 16 diagnostic models with

CRU is 12.17±5.48 Tg CH4 per year (Figure 2). In contrast, the Canadian annual CH4 flux total using the seven WETCHIMP

models with CRU is a factor of more than ∼1.5 higher than the prognostic and diagnostic GCP models, with flux estimates235

(based on the standard deviations of models within the same group) of 21.50±15.12 Tg CH4 per year. We notice that the annual

Canadian CH4 flux total for the LPJ-WHyMe model from WETCHIMP is 46.25±5.88 Tg CH4 per year (Fig. S5). Therefore,

we subsequently exclude this model to recalculate the annual CH4 flux total using the other six WETCHIMP models, and

evaluate whether or not it brings the flux estimates similar to the GCP models. However, the annual CH4 flux total using the

other six WETCHIMP models with CRU is 17.97± 12.59 Tg CH4 per year, which is still about a factor of ∼1.4 higher than240

the prognostic GCP models using CRU meteorology. In addition, the annual CH4 flux totals estimated by the WETCHIMP

models are a factor of ∼1.3 or higher than the GCP models in the two dominant high-latitude biomes across North America

(tundra and boreal forests) (Fig. 2). In Alaska, the annual CH4 flux total estimated by the 11 prognostic GCP models with CRU

is 1.31± 0.85 Tg CH4 per year, whereas the seven WETCHIMP models yield a higher value of 1.66± 2.02 Tg CH4 per year.

Across the North American boreal forests and tundra, the annual CH4 flux totals estimated by the 11 prognostic GCP models245

with CRU are 10.71±5.73 and 1.64±1.31 Tg CH4 per year, respectively. In comparison, the annual CH4 flux totals estimated

by the seven WETCHIMP models in these two biomes are 16.62± 8.55 and 2.15± 1.34 Tg CH4 per year, respectively.

We also find that the CH4 fluxes estimated by the 11 prognostic GCP models result in much lower inter-model uncertainty

compared to the seven WETCHIMP models, with smaller inter-model disagreement across Canada and southern Alaska. To

evaluate model agreement on the spatial distribution of fluxes, we compare the inter-model uncertainty or the standard deviation250

of flux estimates for each individual model grid box of the GCP and WETCHIMP models. Since each WETCHIMP model

identifies the inundation or wetland area differently, we compare these models with the prognostic GCP models (Melton et al.,

2013). Note, however, that not all of the WETCHIMP modeling groups generated their own wetland or inundation maps

prognostically, and some, like LPJ-Bern and LPJ-WHyMe, use a constant, prescribed wetland map. In Figure 3, darker shades

at each grid box represent higher inter-model uncertainty across these process-based models. We observe that the GCP models255

have much lighter shades across the study domain, indicating better inter-model agreement.
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We further find that the WETCHIMP models generally exhibit seasonal cycles that are similar to the GCP models (Figs.

S1a and S1b). Most WETCHIMP models estimate peak CH4 fluxes across Alaska and Canada in July and August, except

CLM4Me (which peaks in June) and LPX-Bern (which peaks in September). These small model disagreements notwith-

standing, this result illustrates that the seasonal cycles of the GCP models have not changed markedly from the WETCHIMP260

models. Inter-model agreement on the magnitude and spatial distribution of fluxes improved in the GCP ensemble compared

to the WETCHIMP ensemble, but we find no such convergence in model agreement on the seasonal cycle. The WETCHIMP

models already showed relatively good agreement on the seasonal cycle of fluxes, so there was not much opportunity for im-

provement. Furthermore, the seasonal cycle of these model estimates is largely dependent on temperature, meaning that it is

arguably easier to model than other features that depend on more complex processes.265

The reduction in inter-model uncertainties from WETCHIMP to GCP may relate to how the models estimate wetland distri-

bution. Different WETCHIMP model yield very different estimates of maximum wetland extent – from 2.7 to 36.4× 106 km2

for the global extra-tropics (> 35◦N), depending upon the model. Melton et al. (2013) explain that several WETCHIMP models

use a binary approach to identify wetland areas, where individual model grid boxes are either 100% wetland or 0% wetland,

and these models tend to have∼ 3−4 times greater wetland area compared to other models (Fig.2 and Table.2 in (Melton et al.,270

2013)). By contrast, other WETCHMIMP models were parameterized to match remote sensing estimates of wetland or open

water extent. In contrast to WETCHIMP, the GCP model ensemble also includes diagnostic experiments in which all modeling

groups used the WAD2M v2 inundation map. These efforts to create a standardized, diagnostic map of wetland extent may

have also influenced the prognostic GCP experiments, and modeling groups may have tuned or modified their setup to be more

consistent with the diagnostic model simulations. In addition, the lower magnitude of CH4 fluxes estimated by the GCP models275

(compared to the WETCHIMP models) is partly attributed to efforts by the GCP modeling group to reduce double-counting of

freshwater areas (e.g., lakes and ponds) in WAD2M v2 (Zhang et al., 2021).

This improved inter-model agreement implies that the fluxes estimated by the current process-based GCP models are more

accurate compared to the fluxes estimated by the previous WETCHIMP models, though that outcome is not guaranteed. In the

following sections, we compare GCP models with atmospheric observations as a way to gauge whether the GCP models are280

indeed more skilled at capturing CH4 fluxes across high-latitude North America.

3.2 Flux Magnitudes of GCP Models

We find that even though the mean wetland CH4 fluxes of the GCP models are about a factor of 2 lower than the WETCHIMP

models across northern North America, most of them are still likely an overestimate by a factor of 2 or more compared to

atmospheric CH4 observations (Fig. 4). We evaluate the magnitude of the GCP models by comparing modeled mixing ratios285

from STILT against observations at the tower sites. Specifically, we divide modeled CH4 mixing ratios using wetland fluxes

from the GCP models by the observed increments, shown in Fig. 4. The modeled wetland CH4 mixing ratios are calculated by

passing each of the GCP models through STILT. The observed increments are calculated as the atmospheric CH4 observations

minus factors unrelated to wetlands – the CH4 boundary condition and the contributions of anthropogenic and biomass burning

fluxes at the observation sites. In Fig. 4, we compare the magnitude of the modeled wetland CH4 mixing ratios and the observed290
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Figure 2. Annual CH4 flux totals across Canada, Alaska, and several biomes. The four bars on the left of each region or biome represent the

2 different climate forcing data (GSWP3 and CRU) and prognostic versus diagnostic types for the GCP models. The green bar shows the

mean annual CH4 flux total using all WETCHIMP models, and the gray bar denotes the mean flux total excluding the LPJ-WHyMe model.

The unit of the annual wetland CH4 flux totals is Tg CH4 per year.

increments at each wetland-dominated in situ tower site across high-latitude North America. A factor larger than one means

that the mixing ratios of modeled wetland CH4 using the GCP models are higher than the observed increments. By contrast,

the gray dashed line at the y-axis equal to 1 indicates a perfect alignment between the modeled wetland CH4 mixing and the

observed increment. The error bars in Fig. 4 reflect the range of results when we use different anthropogenic flux estimates in

the calculations (Sect. 2.3). Note that CH4MOD, DLEM, LPJ-GUESS, TEM-MDM, and TRIPLEX-GHG only have diagnostic295

simulations and not prognostic simulations, and their diagnostic comparisons are represented exclusively by orange bars.

Based on these results, we also argue that anthropogenic CH4 fluxes pose an enormous challenge for isolating and quan-

tifying CH4 fluxes from wetlands, even at very remote observation sites in Canada and Alaska. The vertical bars in Fig. 4

indicate uncertainties in the results due to uncertain anthropogenic fluxes, and we observe a broad spectrum of values de-

pending on which anthropogenic CH4 flux estimate we use. For example, modeled mixing ratios from STILT using the GCP300

CH4 model CLASSIC run prognostically are anywhere between ∼2.5 times higher than the observed increment to ∼6 times

higher, depending on the choice of anthropogenic flux product. As a result, we cannot precisely constrain the optimal magni-

tude of wetland fluxes. These uncertainties notwithstanding, our findings still suggest that wetland fluxes estimated by the 11

prognostic and 16 diagnostic models are often higher than implied by atmospheric observations.

It is difficult to determine the specific causes that drive model disagreements over the magnitude of wetland CH4 fluxes.305

However, these variations are more likely influenced by factors such as soil carbon or by the simplicity/complexity of the

model structure rather than by disagreements over the effects of temperature on fluxes. We do not have a comprehensive set of

modeled environmental variables (e.g., soil carbon) to conduct a systematic examination of all sources of uncertainty. However,
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(a)

(b)

Figure 3. The inter-model standard deviation for each individual model grid box, calculated using the 11 prognostic GCP models (top) and

WETCHIMP models (bottom). The inter-model uncertainty in mode locations is higher for the WETCHIMP models than the GCP models.

All fluxes have units µmol m−2 s−1.

the available model outputs allow us to reason through some key contributors to these uncertainties, such the relationships

between fluxes and temperature (i.e., estimated Q10 values) and the effects of using a common diagnostic inundation map310

versus prognostically generated inundation.

To explore the temperature sensitivities of each GCP model, we fit a Q10 curve for each GCP model (Fig. 5). The Q10

parameter represents the sensitivity of wetland CH4 fluxes to a 10◦C increase in temperature, which provides insight into how

strongly each model responds to temperature changes. A higher Q10 value indicates that the flux estimates are more prone to

change with temperature variations. Our analysis indicates a large variation in temperature sensitivity across the prognostic and315

diagnostic GCP models, but there is not a strong relationship between the magnitude of wetland CH4 fluxes estimated by these

models and the estimated Q10 values (Fig. 5). We find the ELM has the lowest Q10 value of all models at 1.77, suggesting that

CH4 fluxes in ELM are relatively insensitive to temperature changes compared to other models. In contrast, most of the other

prognostic and diagnostic GCP models exhibit Q10 values greater than 2, with the prognostic ISAM model showing the highest

Q10 of 11.92, suggesting a stronger temperature dependence. However, we do not find any correlation between wetland CH4320

fluxes from the GCP models and Q10 values, meaning that models with the highest wetland CH4 fluxes do not always have the
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highest temperature sensitivity. As a result, Q10 does not seem to be the most important contributor driving differences in the

flux magnitude of the GCP models.

We also find that uncertainties in wetland area and inundation likely contribute to but are not the primary the cause of these

disagreements in flux magnitude. For example, the prognostic and diagnostic models usually yield a similar magnitude of325

fluxes, in spite of the fact that these different experiments do not use the same inundation estimates (Fig. 2). For Canada, the

average total flux from the prognostic models is similar to the diagnostic models – 14.19 and 12.17 Tg per year, respectively

(using GSWP3 meteorology). Similarly, the average total flux from the prognostic versus diagnostic models is nearly identical

for the boreal forest biome. In some regions, the diagnostic models show greater agreement on the total annual flux than the

prognostic models, but in other regions, the prognostic and diagnostic models show similar levels of inter-model agreement330

(Fig. 2).

Interesting, we find models with simpler flux calculations yield flux magnitudes that agree more with atmospheric observa-

tions compared to those using more complex equations. GCP models such as LPJ-wsl, SDGVM, and JULES produce smaller

flux magnitudes, and each of these models uses simple approaches to simulate CH4 fluxes. For example, these models rely

only on net fluxes without accounting for specific transport pathways (e.g., ebullition, diffusion, or plant-mediated transport)335

(Zhang et al., 2024). In contrast, models such as VISIT, JSBACH, and ISAM have the largest flux magnitudes, and each of

these models employs more complex equations that include multiple components of CH4 fluxes, such as gross production, oxi-

dation, and consumption. These models also simulate explicit transport pathways like ebullition, diffusion, and plant-mediated

transport, alongside layered soil temperature schemes for temperature sensitivity (Zhang et al., 2024). Models with more com-

plex representations generally require additional input data to provide detailed flux estimates. This pattern suggests that the340

additional complexity in VISIT, JSBACH, and ISAM may introduce greater uncertainty in regions with more uncertain input

data.

3.3 Seasonality

We find that models more consistent with atmospheric observations have a distinct seasonal peak in wetland CH4 fluxes in July

and August. In contrast, models that do not agree well with atmospheric observations have a flatter seasonal cycle.345

To evaluate these differences, we compare the correlation between atmospheric CH4 observations and STILT simulations

using each of the different GCP models (Fig. 6). We specifically use this analysis to explore which GCP models better capture

seasonal and spatial variability of CH4 fluxes across our model domain. First, we calculate R2 values for each model using

a two-predictor regression model. In each regression, the first predictor variables represents modeled CH4 mixing ratios due

to wetlands using one of the GCP models, and the second predictor variable represents modeled CH4 mixing ratios due to350

different anthropogenic flux products plus biomass burning from GFED (Sects. 2.3 and 2.4). The regression will scale the

magnitude of the STILT model outputs to optimally match atmospheric observations. As a result, this analysis is not very

sensitive to the absolute magnitude of the original flux estimates. Instead, the overall fit of each regression is more likely a

reflection of the seasonal and spatial patterns in the wetland, anthropogenic, and biomass burning flux estimates; GCP flux

estimates with more accurate seasonal and spatial variability will more likely yield higher correlation coefficients (R2 values).355
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Figure 5. The plot shows the Q10 factors estimated for each of the GCP models. Each colored shape represents an unique GCP model, and

prognostic and diagnostic values are plotted separately for each model. The plot also shows the relationship between the magnitude of fluxes

estimated by each model for the study domain and the Q10 value estimated for each model.

Figure 6 depicts the mean R2 values for 16 GCP diagnostic wetland models and 11 GCP prognostic wetland models. Each
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Figure 6. The correlation R2 between modeled CH4 mixing ratios using the GCP models and atmospheric observations. Blue dots represent

the mean R2 value for prognostic models across different climate forcing data and anthropogenic products. Orange dots represent the mean

R2 value for diagnostic models across different climate forcing data and anthropogenic products. The y-axis lists all the prognostic and

diagnostic GCP models, and x-axis shows the R2 range for these GCP models.

model has a mean R2 value that is averaged from the two climate forcing data (GSWP3 and CRU) and three anthropogenic

flux products. These results highlight the large variability in R2 values across different GCP models.

Based on this analysis, we categorize each of the diagnostic and prognostic GCP models into three groups based on how

they agree with atmospheric observations. By grouping the models, we can look for common patterns that separate models360

that exhibit high R2 values from those that exhibit lower R2 values. Models with R2 values greater than 0.4 are grouped into

the high R2 group (represented by blue lines in Figs. 7a and 7b), models with R2 values between 0.3 and 0.4 are classified as

the average R2 group (represented by green lines in Figs. 7a and 7b), and models with R2 values below 0.3 are considered as

the low R2 group (represented by red lines in Figs. 7a and 7b). Although these cut-offs are inherently subjective, they offer a

practical framework for grouping the models and result in a similar number of models within each group.365

Across the high and average R2 groups, CH4 fluxes exhibit a clear seasonal cycle, and we find that approximately 60–70%

of the total fluxes from these models during the period of May to October occur during the peak summer season (June, July,

and August). In these groups, the models capture the sharp rise and fall of the CH4 fluxes, and they also show peak monthly

percentages during July and August (Figs. 7a and 7b). The low R2 models display a much flatter seasonal pattern. The flatter

seasonal cycle indicates that these models do not capture the pronounced summer peaks observed in the high and average370

groups, suggesting that they may not fully capture seasonal variations in wetland fluxes.
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The relationships between CH4 fluxes and temperature may explain some, though not all, of the differences in seasonality

among the GCP models. In our study, diagnostic SDGVM, diagnostic LPJ-MPI, diagnostic JULES, and diagnostic ISAM are

the models that have high and average R2 values (>0.35), and both have estimated Q10 values greater than three, indicating

a high sensitivity of their fluxes to temperature changes. Moreover, models in the low R2 group (<0.30) have estimated Q10375

values below 2, resulting in weaker temperature-driven flux variations (Fig. 5). This result shows that temperature relationships

can explain at least some differences in the seasonality of the diagnostic GCP models. By comparison, existing empirical

studies find a range of Q10 values for wetlands in the arctic region. Cao et al. (1996) suggest that a Q10 value of 2 is calculated

using a simple temperature response model, but Ito (2019); Walter and Heimann (2000) compute the Q10 values of 3.85 and

6 using a more complicated mechanistic temperature response model. In addition, another study finds that the composition of380

wetlands can also yield different Q10 values in the arctic region. Specifically, M. Lupascu and Pancost (2012) find that wetlands

that contain more Sphagnum moss can result in a Q10 value of 8 or higher. These studies show that Q10 values can be highly

dynamic in high-latitude regions, and a Q10 value of 6 does not necessarily mean that the temperature response model is wrong.

3.4 Spatial Distribution

We find that prognostic models that are most consistent with atmospheric observations concentrate their fluxes near the HBL385

(Fig. 8a). In contrast, prognostic models with the lowest R2 values focus their fluxes outside this key region (Fig. 8c). To gain

insight into the spatial patterns of prognostic GCP models, we analyze how their flux estimates vary across different regions.

We focus this section on the prognostic models because the diagnostic models use the same inundation map and therefore

exhibit similar spatial flux patterns. Similar to the previous analysis of seasonality, we group the prognostic models into three

categories (high, average, low) depending on their R2 values when compared against atmospheric observations. A Principal390

Component Analysis (PCA) highlights common spatial patterns among the models in each different group (e.g., Wold et al.,

1987; Jolliffe, 1986; Delwiche et al., 2021). The percentage of variance explained by the first principal component shows the

degree of spatial patterns shared among models in each group, and this percentage captures how consistently the models agree

in their spatial flux distributions across grid boxes within the study domain. We find that models in the high R2 group have a

first principal component (PC1) explaining 63.5% of the variance, followed by the average R2 group with 50.1%, and the low395

R2 group with 68.9% explained variance. Although the low R2 group shows the highest explained variance, this number does

not necessarily indicate that the models in this group are more accurately capturing the true spatial patterns of the CH4 fluxes

compared to those in other groups.

We find notable common spatial features among the models in the high R2, as seen in the PCA analysis. LPJ-wsl and

CLASSIC have the highest R2 values, and these models consistently concentrate their CH4 fluxes in the HBL. In contrast,400

JULES, ISAM, and ELM are the models with lower R2 values. These models show large spatial discrepancies in critical

wetland regions such as the HBL, and they tend to concentrate fluxes outside of these key regions, particularly in the Great

Lakes region of Canada.

An important caveat of this result is that the long-term observation network is sensitive to fluxes from some regions of

high-latitude North America but not others (Fig. 1), so this analysis of spatial distribution is weighted to areas with good405
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(a)

(b)

Figure 7. The seasonal cycles of the diagnostic GCP models (a) and prognostic GCP models (b) from 2007-2017. The blue, green, and red

lines each represent the GCP models that have the highest, average, low R2 values with atmospheric observations. The x-axis represents the

months from May to October throughout 2007-2017, and y-axis denotes the percentages of CH4 fluxes that occur within that month.

observational coverage. We also note that none of the atmospheric observing towers are directly located in the HBL, but the

STILT footprints shown in Fig. 1 indicates that the network is sensitive to CH4 fluxes from the broader region, allowing us to

draw conclusions about the spatial distribution of fluxes in and around the HBL.

Interestingly, we also find that for 64% (7/11) of the models, the diagnostic version of the model yields a better fit (R2) against

atmospheric observations compared to the prognostic version of the model (Fig. 6. Prognostic versions of CLASSIC, SDGVM,410

LPX-Bern, and VISIT have better R2 values compared to diagnostic versions). The diagnostic and prognostic versions of

each model often exhibit similar seasonal cycles (Fig. 7) but often exhibit different spatial patterns. This result suggests that

the diagnostic inundation map is likely a more reliable or accurate inundation product than the inundation maps generated

internally by the prognostic models, thus allowing the models to better capture regional CH4 fluxes in high-latitude North

America.415
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8. The PCA results and mean standardized CH4 fluxes for the prognostic GCP models, run separately for each group of models – the

high (a and d), average (b and e), and low (c and f) R2 groups. The unit for PCA results is in explained variance by the first component (%),

and darker (or more blue) shades represent better spatial agreements among the models within a same group.

4 Conclusions

This study highlights areas of convergence and disagreement among state-of-the-art process models of wetland CH4 fluxes.

We compare the estimates with atmospheric CH4 observations between May and October in high-latitude North America. In

the first section of the paper, we find that GCP models have a much smaller flux magnitude and lower inter-model uncertainty

across North America compared to a previous model inter-comparison (WETCHIMP). This change in magnitude improves420

consistency with atmospheric CH4 observations, though we argue that the current GCP model ensemble is still too high across

much of Canada and Alaska. In the second section of the study, we find that process-based CH4 models that are most consistent

with atmospheric observations exhibit the highest percentage of fluxes in July and August relative to other months and have a

sharper seasonal cycle. These process-based models also concentrate their fluxes near the HBL while less skilled models often

concentrate fluxes further south near the Great Lakes.425

Overall, this study highlights the opportunity to improve current process-based models to estimate regional wetland CH4

fluxes. Key areas for improvement in model parameterization include addressing uncertainties in inundation maps to capture

wetland extent and improving estimated maps of soil carbon, though the latter factor was difficult to evaluate this study. We

find that prognostic models show greater room for improvement than the diagnostic models; while diagnostic models benefit

from consistent inundation maps, the development of better prognostic models is nevertheless very important because these430
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models can be used to project future trends in wetland extent or inundation, which is critical for future projections of CH4

fluxes under the ongoing climate change. Overall, we argue that the bottom-up modeling community had made large strides in

reducing inter-model uncertainties, and these improvements are consistent with atmospheric CH4 observations. With that said,

there is still an enormous need for further improvements in these models to advance understanding of high-latitude wetland

CH4 fluxes in a changing climate.435

19

https://doi.org/10.5194/egusphere-2025-2150
Preprint. Discussion started: 4 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Data availability. We received the wetland model estimates from Zhen Zhang and the GCP modeling team, and these datasets are available

upon request from the GCP modeling team. The GlobalViewPlus CH4 ObsPack v5.1 dataset is available at https://gml.noaa.gov/ccgg/

obspack/citation.php?product=obspack_ch4_1_GLOBALVIEWplus_v5.1_2023-03-08.

The WRF-STILT footprints for North American CH4 monitoring sites are available at https://gml.noaa.gov/aftp/products/carbontracker/

lagrange/footprints/ctl-na-v1.1/. The North American Boundary Condition product is provided by the NOAA Earth System Research Labo-440
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